Friday, April 11, 2025
Powered by: University of Bern
2338 Members
127 Countries!
join us
HomeArticlesIn silico screening of potent bioactive compounds from honeybee products against COVID-19...

In silico screening of potent bioactive compounds from honeybee products against COVID-19 target enzymes

Abstract

After the early advent of the Coronavirus Disease 2019 (COVID-19) pandemic, myriads of FDA-approved drugs have been massively repurposed for COVID-19 treatment based on molecular docking against selected protein targets that play fundamental roles in the replication cycle of the novel coronavirus. Honeybee products are well known of their nutritional values and medicinal effects. Bee products contain bioactive compounds in the form of a collection of phenolic acids, flavonoids, and terpenes of natural origin that display wide spectrum antiviral effects. We revealed by molecular docking the profound binding affinity of 14 selected phenolics and terpenes present in honey and propolis (bees glue) against the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) enzymes of the novel SARS-CoV-2 virus (the causative agent of COVID-19) using AutoDock Vina software. Of these compounds, p-coumaric acid, ellagic acid, kaempferol, and quercetin have the strongest interaction with the SARS-CoV-2 target enzymes, and it may be considered an effective COVID-19 inhibitor.

Full Article

Yahya
Yahyahttps://scholar.google.com.eg/citations?user=Bg8t3ewAAAAJ&hl=de
Dr. Yahya Al Naggar,  Associate professor of Entomology at Zoology Department, Faculty of Science, Tanta University, Egypt. Currently, he is AvH  postdoc fellow  at institute of General Biology, Martin Luther University.  He is interested to unravel the causes of colony collapse disorders (CCD).  He is conducting lab and field experiments to test whether novel insecticides that are targeting the nicotinic acetylcholine receptor of insects is also harmful to honeybees as well as in their interaction with other stressors. Such knowledge is key for pollinator health and key to safeguard food security into the future.