The rapid increase in global plastic production and usage has led to global environmental contamination, with microplastics (MPs) emerging as a significant concern. Pollinators provide a crucial ecological service, while bee populations have been declining in recent years, and MPs have been recognized as a new risk factor contributing to their losses. Despite the pervasive distribution and persistence of MPs, understanding their risks to honey bees remains a critical knowledge gap. This review summarizes recent studies that investigate the toxicity of MPs on honey bee health from different perspectives. The findings revealed diverse and material-/size-/dosage-dependent outcomes, emphasizing the need for comprehensive assessments in the follow-up studies. MPs have been detected in honey and in bees’ organs (e.g., gut and brain), posing potential threats to bee fitness, including altered behavior, cognitive abilities, compromised immunity, and dysfunction of the gut microbiota. It should be noticed that despite several laboratory studies suggesting the aforementioned adverse effects of MPs, field/semi-field experiments are still warranted. The synergistic toxicity of MPs with other environmental contaminants (pesticides, antibiotics, fungicides, heavy metals, etc.) still requires further investigation. Our review highlights the critical need to understand the relationships between MPs, pollinators, and the ecosystem to mitigate potential risks and ensure the sustainability of vital services provided by honey bees.
Exploring the risk of microplastics to pollinators: focusing on honey bees
You are here:
Share this post
Author: YahyaAlNaggar
https://scholar.google.com.eg/citations?user=Bg8t3ewAAAAJ&hl=deDr. Yahya Al Naggar, Associate professor of Entomology at Zoology Department, Faculty of Science, Tanta University, Egypt. Currently, he is AvH postdoc fellow at institute of General Biology, Martin Luther University. He is interested to unravel the causes of colony collapse disorders (CCD). He is conducting lab and field experiments to test whether novel insecticides that are targeting the nicotinic acetylcholine receptor of insects is also harmful to honeybees as well as in their interaction with other stressors. Such knowledge is key for pollinator health and key to safeguard food security into the future.