pesticides

You are here:
Add Post

Chronic exposure to pesticides disrupts the bacterial and fungal co-existence and the cross-kingdom network characteristics of honey bee gut microbiome

Gut microbiome communities have a significant impact on bee health and disease and have been shown to be shaped by a variety of factors, including exposure to pesticides and inhive chemicals. However, it is unknown whether pesticide exposure affects the coexistence and cross-kingdom network parameters of bee gut microbiome communities because microbes may compete in…

The Insecticide Imidacloprid Decreases Nannotrigona Stingless Bee Survival and Food Consumption and Modulates the Expression of Detoxification and Immune-Related Genes

Stingless bees are ecologically and economically important species in the tropics and subtropics, but there has been little research on the characterization of detoxification systems and immune responses within them. This is critical for understanding their responses to, and defenses against, a variety of environmental stresses, including agrochemicals. Therefore, we studied the detoxification and immune…

Flupyradifurone, sulfoxaflor and azoxystrobin disrupt the gut microbiota of honey bees and increase bacterial pathogens

The gut microbiome plays an important role in bee health and disease. But it can be disrupted by pesticides and in-hive chemicals, putting honey bee health in danger. We used a controlled and fully crossed laboratory experimental design to test the effects of a 10-day period of chronic exposure to field-realistic sublethal concentrations of two…

Lethal, sublethal, and combined effects of pesticides on bees: A meta-analysis and new risk assessment tools

Abstract Multiple stressors threaten bee health, a major one being pesticides. Bees are simultaneously exposed to multiple pesticides that can cause both lethal and sublethal effects. Risk assessment and most research on bee health, however, focus on lethal individual effects. Here, we performed a systematic literature review and meta-analysis that summarizes and re-interprets the available…

Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health

Honeybees are the most prevalent insect pollinator species; they pollinate a wide range of crops. Colony collapse disorder (CCD), which is caused by a variety of biotic and abiotic factors, incurs high economic/ecological loss. Despite extensive research to identify and study the various ecological stressors such as microbial infections, exposure to pesticides, loss of habitat,…

Resistance and Vulnerability of Honeybee (Apis mellifera) Gut Bacteria to Commonly Used Pesticides

Agricultural and apicultural practices expose honeybees to a range of pesticides that have the potential to negatively affect their physiology, neurobiology, and behavior. Accumulating evidence suggests that these effects extend to the honeybee gut microbiome, which serves important functions for honeybee health. Here we test the potential effects of the pesticides thiacloprid, acetamiprid, and oxalic…